edexcel

Mark Scheme (Results)
Summer 2016

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 1CR

Pearson Edexcel International in Science Double Award (4SC0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 4CH0_1CR_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 a	atomic number	Accept proton number Accept number of protons	1
b	(relative) atomic mass	Reject mass number	1
c i	electrons		1
ii	electrons		1
iii	protons AND neutrons	Names can be in either order	1
iv	protons AND electrons	Names can be in either order	1
v	neutrons		1

Question number	Answer				Notes	Marks
	Change of state	State symbol before change	State symbol after change		I AND g in first row g AND s in second row s AND g in third row	3
	Water boils in a kettle	I	g	Accept upper case letters, eg S in place of s Accept words, eg liquid in place of I Accept answers in brackets		
	Ethene is converted to poly(ethene)	g	S			
	Crystals of iodine sublime on heating	S	g			
b	$\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$			Award 1 mark for s and g correct Award 1 mark for other 3 correct Accept upper case Reject words		2
c	s / solid			Accept upper case S in place of s		1

Question number	Answer	Notes
3 a	D / simple distillation	Marks
b	C / fractional distillation	1
c	B / filtration	1
d	A / crystallisation	1

Question number	Answer		Notes	Marks
4 a	C (green)			1
b	value in range 120-250		If range given, it must be wholly within 120-250	1
c	(colour) dark(er) grey / black		Do not accept grey alone Reject any other colour given with black eg blue/black Ignore just darker than iodine Accept correct state symbol	2
d	C (outer electrons)			1
e	Incorrect word	Correct word	one mark for each correct row Accept minor variations and alternatives and extra words eg for negative, accept negatively / minus eg for oxidising, accept oxidation / electron acceptor /oxidating Accept potassium bromide and sodium bromide Accept K for potassium and Na for sodium	
	positive	negative		
	potassium	sodium		3
	reducing	oxidising		

Question number	Answer	Notes	Marks
5 a i ii	to prevent spots/them dissolving/mixing (in the solvent) / OWTTE Any two from: M1 evaporation /loss of solvent / OWTTE M2 risk of fire M3 fumes may be toxic/poisonous	Accept substance(s)/pigment(s)/dy $e(s)$ for spots Ignore references to diffusion/absorption Ignore references to spots smudging/running Accept spots would be washed off/away Ignore water for solvent Accept water for solvent Ignore gas escaping Ignore it is flammable only Ignore harmful/dangerous Ignore references to substances entering tank/spillage Ignore references to reaction with air	1

b	M1 cross in box A (chlorophyll is not present in carrots, sweet potatoes or tomatoes) M2 cross in box C (both beta-carotene and lycopene are present in sweet potatoes) M3 cross in box E (Both carrots and tomatoes contain a pigment other than beta-carotene, chlorophyll and lycopene)	If more than three answers given mark on list principle: eg four answers given with 3 correct and 1 incorrect scores 2 marks eg all five answers given so 3 correct and 2 incorrect scores 1 mark	3
c	M1 (distance between start line and solvent front) $=6(.0)$ M2 correct evaluation of R_{f} value $1.3 / 6.0=0.22$	Accept answer to 1 or more dp, eg 0.2, 0.217, Accept 0.216recurring Reject 0.216 correct answer with no working scores 2 M2 CQ on M1	2
d	(there is a substance in sweet potatoes that) does not dissolve/is insoluble (in the solvent)	Ignore mix Ignore water for solvent Reject not very soluble/partially soluble	1

Question number	Answer	Notes	Marks
6 a	covalent	Ignore references to polar bonding and electron sharing	1
b	M1 weak forces (of attraction) between molecules / weak intermolecular forces M2 (therefore) little (thermal/heat) energy required to overcome the forces / separate the molecules	Accept bonds for forces for both M1 and M2 Reject atoms for both M1 and M2 Accept particles for molecules Accept correctly named IMF eg van der Waals' Ignore more easily separated / easier to break if any reference to/implication of breaking covalent or ionic bonds scores $0 / 2$ M1 and M2 indep	2
c	M1 (strong) attraction between bonding/shared pair of electrons M2 (and) nuclei of (both atoms) OR M1 bonding/shared pair of electrons M2 (strongly) attracted to nuclei (of both atoms)	Do not award M2 if reference to only one nucleus Do not award M2 if reference to only one nucleus	2

d	$\mathrm{H}_{\times}^{\circ} \mathrm{Cl} \mathrm{Cl}_{\bullet}$	M1 for 2 electrons shared between one H and one Cl M2 rest of molecule fully correct M2 DEP on M1 Accept any combination of dots and crosses Ignore inner shells of electrons in chlorine if overlapping touching/circles are used both electrons must be within the overlapping/touching area symbols do not need to be shown if overlapping touching /circles are used	2
e	M1 (effervescence) due to hydrogen (gas) M2 solution A is acidic / contains H^{+} / contains hydrochloric acid M3 solution B is not acidic / does not contain H^{+} / does not contain hydrochloric acid	Accept hydrogen chloride/HCl does not ionise/ dissociate If only reference to HCl ionises/dissociates allow max one mark for M2 and M3, ie reference to either H^{+}or acid(ic) needed to score both marks Ignore the bonds between H and Cl are not broken (when HCl dissolved) in methylbenzene Do not award M3 if any reference to methylbenzene reacting or dissociating	3

| Question
 number | Answer | Notes |
| :---: | :--- | :--- | :--- | :--- |

$\begin{array}{c}\text { Question } \\ \text { number }\end{array}$	Answer	Notes	Marks
9 a	$\begin{array}{l}\text { (polystyrene is an) insulator / } \\ \text { prevents/reduces heat loss }\end{array}$	$\begin{array}{l}\text { Accept is a poor conductor (of heat) } \\ \text { Accept keeps heat in } \\ \text { Accept doesn't conduct (heat) as well (as glass) } \\ \text { Ignore does not heat up } \\ \text { Ignore references to accuracy/safety/breakages } \\ \text { Reject to keep the temperature constant }\end{array}$	1

c i		M1+M2 all seven points plotted to nearest gridline Deduct 1 mark for each error M3 best fit straight line through first 4 points drawn with aid of a ruler M4 best fit straight line through last 3 points drawn with aid of a ruler No penalty if lines do not cross or if the two straight lines are joined by a curve	4
		values correctly read from candidate's graph Do not award these marks if lines do not cross or if curve drawn	
ii	M1 (temperature) M2 (volume)	temperature to $\pm 0.1^{\circ} \mathrm{C}$ volume to $\pm 0.25 \mathrm{~cm}^{3}$ If values correct but in wrong places allow $1 / 2$	2

Question number	Answer	Notes	Marks	
9 d	M 1	mass $=47.7(\mathrm{~g})$		
	M 2	temperature change $=5.8\left({ }^{\circ} \mathrm{C}\right)$		

Question number	Answer	Notes	Marks
$\begin{array}{lll}10 & \text { a } \\ & \\ & \\ & \\ & \\ & \\ & \end{array}$	M1 $n\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)=\frac{0.300 \times 20}{1000} \quad$ OR $0.006(0) \mathrm{mol}$ ($=n\left(\mathrm{SO}_{2}\right)$) M2 $\quad \mathrm{Mr}$ of $\mathrm{SO}_{2}=32+(2 \times 16) \mathrm{OR} 64$ M3 mass of $\mathrm{SO}_{2}=(0.006 \times 64)=0.38(\mathrm{~g})$ M1 mass of SO_{2} in $1 \mathrm{dm}^{3}=\frac{0.38(4) \times 1000}{50}$ $=7.6(8)(\mathrm{g})$ M2 this is less than 100 so no SO_{2} will escape OR M1 volume of solvent is $50 \mathrm{~cm}^{3}$ which would dissolve $(100 / 20)=5(\mathrm{~g})$ M2 $\quad 0.384(\mathrm{~g})$ is less than $5(\mathrm{~g})$ so no SO_{2} would escape	Mark CQ throughout Accept any number of sig fig Correct final answer with or without marking scores 3 marks M1 CQ on M3 in ai Accept any number of sig fig If candidate value for M1 is greater than 100, award M2 for opposite argument If no answer to M1 then M2 cannot be awarded If answers based on volume of solvent $=20 \mathrm{~cm}^{3}$ eg $20 \mathrm{~cm}^{3}$ which would dissolve $(100 / 50)=$ 2(g) $0.384(\mathrm{~g})$ is less than $2(\mathrm{~g})$ so no SO_{2} would escape worth 1 mark	3

Question number	Answer	Notes	Marks
$10 \mathrm{~d} \quad$ i	M1 times are (very) short M2 heat loss greater M1 more collisions/particles have energy equal to/greater than the activation energy M2 (therefore there are) more successful collisions (per second)	Accept reaction happens too/very/so quickly (so hard to time accurately/precisely) Ignore reaction is quicker Ignore hard(er) to measure rate Allow human reaction time becomes significant Allow references to shorter times producing greater percentage (measurement) uncertainties/errors Accept heat loss occurs more quickly Accept difficult to maintain a higher temperature/keep temperature constant Ignore references to evaporation occurring Ignore particles have more (kinetic) energy Ignore harder/more vigorous collisions Ignore references to speed of particles if state activation energy is lowered scores $0 / 2$ references to concentration scores $0 / 2$	2

Any three from

M1 concentration of the (hydrochloric/nitric) acid

M2 volume of the (hydrochloric/nitric) acid
M3 volume of sodium thiosulfate
M4 temperature

Allow amount for volume
If neither M2 or M3 scored allow 1 mark for total volume of the mixture OR
depth of liquid in the flask
Ignore reference to volume of water Ignore references to size of flask/same apparatus
Ignore references to distance of eye from flask/ the $\mathrm{X} /$ references to timing

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
11 a \\
b \\
i \\
ii
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}
\] \\
M1 (increased pressure) has no effect (on yield) \\
M2 because equal numbers of (gas) moles/molecules on each side \\
M1 (at higher temperature equilibrium position shifts to left so yield of hydrogen) decreases \\
M2 because (forward) reaction is exothermic
\end{tabular} \& \begin{tabular}{l}
Accept fractions and multiples \\
Ignore no effect on other factors eg equilibrium (position) \\
Do not award M2 if M1 is incorrect \\
Accept because backward reaction is endothermic Accept because reaction moves in the endothermic direction \\
Ignore references to Le Chatelier's principle eg increase in temperature favours the endothermic reaction \\
Do not award M2 if M1 is incorrect
\end{tabular} \& 1
2

2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
11 d	M1 identifying reaction 3 or reaction 4 M2 a correct explanation for either eg in reaction 3, there is gain of hydrogen in reaction 4, there is gain of oxygen	Ignore reactions 5 and 6 Accept increase in oxidation number of $\mathrm{H} /$ changes from 0 to (+)1 Accept decrease in oxidation number of $\mathrm{N} /$ changes from 0 to -3 Ignore references to gain/loss of electrons Accept decrease in oxidation number of $\mathrm{O} /$ changes from 0 to -2 Accept increase in oxidation number of $\mathrm{N} /$ changes from -3 to (+)2 Ignore references to gain/loss of electrons Ignore other explanations Allow: Identifying both Reaction 3 and 4 only for 2 marks Ignore any explanations	2

e	M1 $n\left(\mathrm{NH}_{3}\right)=\frac{34 \times 1000}{17}=2000(\mathrm{~mol})$ M2 $M_{\mathrm{r}}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80$ M3 mass $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80 \times 2000=160000 \mathrm{~g} / 160 \mathrm{~kg}$ OR M1 $M_{\mathrm{r}}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80$ M2 (so) $17\left(\mathrm{~kg} \mathrm{NH}_{3}\right)$ gives $80\left(\mathrm{~kg} \mathrm{NH} 4 \mathrm{NO}_{3}\right)$ M3 (so) $34\left(\mathrm{~kg} \mathrm{NH}_{3}\right)$ gives $\frac{80}{17} \times 34=160 \mathrm{~kg}$ $/ 160000 \mathrm{~g}$	Correct final answer with or without working scores 3 marks Do not award M3 if unit missing or incorrect Mark CQ throughout	3

Question number	Answer	Notes	Marks
$12 \text { a i }$ ii iii	fuel oil fuel oil gasoline		1
b i ii	alumina / silica M1 for correct formula - $\mathrm{C}_{4} \mathrm{H}_{8}$ M2 for correct coefficient - 2	Accept aluminosilicates/zeolites Accept aluminium oxide/silicon dioxide/silicon oxide/silicon (IV) oxide Accept correct formulae Accept $\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{C}_{4} \mathrm{H}_{8}$ for 2 marks Award 1 mark for $4 \mathrm{C}_{2} \mathrm{H}_{4}$ Award 1 mark for $\mathrm{C}_{8} \mathrm{H}_{16}$ Award 1 mark for two alkenes which have a total of 8C and $16 \mathrm{Heg} \mathrm{C} 3 \mathrm{H}_{6}+\mathrm{C}_{5} \mathrm{H}_{10}$	1

$\left.\begin{array}{|l|lll|l|}\hline \text { iii } & \begin{array}{ll}\text { M1 } & \begin{array}{l}\text { over/greater supply of long-chain } \\ \text { hydrocarbons/molecules/ } \\ \text { heavy/heavier fractions / OWTTE }\end{array} \\ \text { M2 } & \begin{array}{l}\text { Accept long chain hydrocarbons/molecules } \\ \text { heavy/heavier fractions are of less use (as fuels) } \\ \text { hemain/small hydrocarbons/ light/lighter } \\ \text { fractions / OWTTE }\end{array}\end{array} & \begin{array}{l}\text { Accept answers in terms of petrol / fuel (for cars) } \\ \text { Short chain hydrocarbon molecules are more useful/in } \\ \text { greater demand than long chain } \\ \text { hydrocarbons/molecules scores M1 and M2 }\end{array} & \text { 3 }\end{array}\right\}$

| Question
 number | Notes | Marks |
| :--- | :--- | :--- | :--- |
| 12 d | | |

